(x^2-6x+9)/(x^2-9)=-2

Simple and best practice solution for (x^2-6x+9)/(x^2-9)=-2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x^2-6x+9)/(x^2-9)=-2 equation:



(x^2-6x+9)/(x^2-9)=-2
We move all terms to the left:
(x^2-6x+9)/(x^2-9)-(-2)=0
Domain of the equation: (x^2-9)!=0
We move all terms containing x to the left, all other terms to the right
x^2!=9
x^2!=9/
x^2!=√1/0
x!=1
x∈R
We add all the numbers together, and all the variables
(x^2-6x+9)/(x^2-9)+2=0
We multiply all the terms by the denominator
(x^2-6x+9)+2*(x^2-9)=0
We multiply parentheses
2x^2+(x^2-6x+9)-18=0
We get rid of parentheses
2x^2+x^2-6x+9-18=0
We add all the numbers together, and all the variables
3x^2-6x-9=0
a = 3; b = -6; c = -9;
Δ = b2-4ac
Δ = -62-4·3·(-9)
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{144}=12$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-12}{2*3}=\frac{-6}{6} =-1 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+12}{2*3}=\frac{18}{6} =3 $

See similar equations:

| -2×2×3y=9 | | Y=x^2-12x+24 | | -35-8x=-3x | | 5x2=-22x-8 | | 2x3+4x2+2x=0 | | -10+10(-4x-12)=420 | | x^2-7x+7=35 | | x/6+5=2/3+x | | 6x-2(2x-1)=6 | | 3p-10=28 | | 3/5n+9)10=-1/5n-23/10 | | ×-10(5x+5)=-2-x | | -4(u+3)=2u-3+3(3u+3) | | 48=-7+13x | | -2x-3+4x=17 | | x*0.40=562503 | | 3x/8-x/4=5x/12-7 | | y-45/6=71/5 | | 9x^2-4x+25=-34x | | (x+2/x+3)-(x-1/x)+3/40=0 | | -4(-2y+9)-7y=5(y-5)-1 | | 4(5-2x+12x)=22 | | 6-2x-x=-9 | | -12x+7(-1-7)=420 | | j=j+1 | | x+2/x+3-x-1/x+3/40=0 | | l=l+1 | | X/2+x=141 | | 5(v+5)=2v+19 | | (3+4x)=(x-8) | | 7y-32=2(y+9) | | (3+4x)=(1x-8) |

Equations solver categories